I. Changes in the Microvascular System and Stroma During Erythropoietic Regeneration and Suppression in the Spleens of CF1 Mice

نویسندگان

  • Robert S. McCuskey
  • Howard A. Meineke
  • Samuel F. Townsend
چکیده

Specific alterations in the microvascular and connective tissue compartments of the hemopoietic microenvironment have been examined during erythropoietic regeneration and suppression in the murine spleen and bone marrow using in vivo microscopic and histochemical methods. The results have confirmed the concept of specific hemopoietic microenvironments and have demonstrated specific alterations in the microenvironment during erythropoietic stimulation and repression. Elevated erythropoiesis in the splenic red pulp is accompanied by an elevation in blood flow through the microvascular system. Both the linear velocity of flow and the number of sinusoids with blood flow in them increased significantly. In contrast, erythropoietic repression was accompanied by a decreased linear velocity of blood flow, as well as a marked increase in the amount of blood being stored in the splenic sinusoids. This also was the picture when diffuse granulopoiesis was present in the red pulp, or when granuloid or undifferentiated colonies were present. The chemical composition of the stroma in the spleen and bone marrow also varied during states of hemopoietic activity and, in addition, there were differences in the composition of the stroma between these two organs. In both organs, foci of early proliferating cells were enveloped by a coating of sulfated acid mucopolysaccharide. This coat persisted on cells in later stages of granulopoiesis but not on cells in the later stages of erythropoiesis. The latter were enveloped with a coating of neutral mucopolysaccharide. A tentative hypothesis to explain the mechanisms involved in producing these changes is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studies of the Hemopoietic Microenvironment

Specific alterations in the microvascular and connective tissue compartments of the hemopoietic microenvironment have been examined during erythropoietic regeneration and suppression in the murine spleen and bone marrow using in vivo microscopic and histochemical methods. The results have confirmed the concept of specific hemopoietic microenvironments and have demonstrated specific alterations ...

متن کامل

Sliver nanoparticles accelerate skin wound healing in mice (Mus musculus) through suppression of innate immune system

Objective(s): This study aimed to find the effects of silver nanoparticles (Ag-NPs) (40 nm) on skin wound healing in mice Mus musculus when innate immune system has been suppressed.Materials and Methods: A group of 50 BALB/c mice of about 8 weeks (weighting 24.2±3.0 g) were randomly divided into two groups: Ag-NPs and control group, each with 25 mice. Once a day at the same time, a volume of 50...

متن کامل

Expression of pro-inflammatory genes in lesions, spleens and blood neutrophils after burn injuries in mice treated with silver sulfodiazine

Objective(s): It is now supposed that cytokines released during the burn injuries have a great impact on the immunological and pathological responses after the burn. The main objective of this study was to investigate the expression of some pro-inflammatory genes in the wound, spleen and blood neutrophils during the healing process of burn wounds in a murine model. Materials and Methods: The ex...

متن کامل

Why does the central nervous system not regenerate after injury?

A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...

متن کامل

Why does the central nervous system not regenerate after injury?

A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005